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Abstract

System-on-chip (SoC) design requires complex reasoning
about the interactions between an architectural specifica-
tion, the microarchitectural datapath (e.g., functional units),
and the control logic (which coordinates the datapath) to fa-
cilitate the critical computing tasks on which we all depend.
Hardware specialization is now the expectation rather than
the exception, meaning we need new hardware design tools
to bring ideas to reality with both agility and correctness.

We introduce a new technique, “control logic synthesis”,
which automatically generates control logic given a datapath
description and an architectural specification. This enables
an entirely new hardware design process where the designer
only needs to write a datapath sketch, leaving the control
logic as “holes” Then, guided by an architectural specifica-
tion, we adapt program synthesis techniques to automatically
generate a correct hardware implementation of the control
logic, filling the holes and completing the design.

We evaluate control logic synthesis over two classes of con-
trol (state machines and instruction decoders) and different
architectures (embedded-class RISC-V cores and hardware
accelerators for cryptography). We demonstrate how agile-
oriented SoC developers can iterate over designs without
writing control logic by hand yet still retain formal assur-
ances with only minimal microarchitectural information.
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1 Introduction

Embedded SoCs are the foundation of some of our most crit-
ical infrastructure, controlling everything from remote sur-
gical equipment [46], to telecommunications satellites [13],
to access to other larger compute and storage resources [30].
In such domains, any correctness issue could be catastrophic.
As a result, studies show roughly half of development time
is spent on verification [16]. To reduce cost and meet the
growing demand for specialised hardware, we must find op-
portunities for correct-by-construction automation of design.
Our new technique, control logic synthesis, meets this goal
by freeing design engineers from writing control logic.

In this paper, we describe a method for automatically gen-
erating correct-by-construction control logic (or OWL, “op-
erational wires and logic”) for embedded-class root-of-trust
SoCs. Our technique generates control logic with respect
to a formal instruction set architecture (ISA) or instruction-
level abstraction (ILA) specification, with only a minimal
microarchitectural model, leaving the hardware designer
free to iterate over the datapath and specification. Despite
the leakiness of the control-datapath abstraction, we find that
the datapath captures the designer’s intent and narrows the
innumerable microarchitectural possibilities down to a more
manageable set tailored to the most important behaviors.

We work to compose the problem in a way that is tractable
for modern program synthesis tools (synthesizing from the
entire design and specification fails even for small hardware
designs) and to handle the disconnect between the archi-
tectural specification and the microarchitecture (pipelining
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Figure 1. An overview of our technique: starting from an
HDL sketch of the datapath combined with a formal architec-
tural specification to generate correct-by-construction HDL
code that completes the control logic.

being one example challenge). We focus on the kinds of be-
spoke embedded SoC designs which current solver-aided
techniques can handle and where correctness is crucial.

1.1 The Control-Datapath Divide

Traditionally, embedded SoC design requires human rea-
soning about all of the behaviors a specific ISA/ILA might
embody, down through the microarchitecture, including op-
timizations such as pipelining, caching, etc., to a complete
digital design. Holding such a complex set of relationships in
one’s head all at once is incredibly difficult. When adopting
an existing, open design, today’s hardware designer must
learn all of this information to extend the architecture and op-
timise the microarchitecture for their domain-specific goals.
To make our reasoning simpler, it is common to divide a
design roughly between a datapath (the composition of func-
tional units that operate on data and stateful elements) and
the control logic (the signals that coordinate and route data
through appropriate functional units at appropriate times).
Designers typically concentrate first on instructions’ com-
putational action as they independently traverse these data-
paths, leaving their exact orchestration of control for later.
Of course, the control-datapath divide is imperfect as the
interactions between them and their relation to the ISA se-
mantics can be subtle and difficult to reason about, particu-
larly for a new or unfamiliar designer. In practice, data flows
between the control and datapaths bidirectionally, thanks
to matters like data-dependent control flow. Even worse, as
the designer iteratively changes either the architecture (e.g.,
adding custom instructions) or the datapath (e.g., functional
units or microarchitectural optimizations) they must recon-
sider all of these interdependencies which can easily cause
pervasive and non-local changes to the control logic.
These problems are further exacerbated by the fact that
testing is the most common means for assessing an SoC de-
sign’s correctness (particularly in small, agile teams). While
formal verification techniques are adopted in industry [10,
17, 20, 26, 28, 37, 43, 45, 53], they usually involve manually
creating a separate, detailed microarchitectural model that
must be updated in lockstep with the design. In contrast,
our correct-by-construction approach requires only a light-
weight microarchitectural model to handle optimizations
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such as pipelining in the form of a programmatic mapping
from architectural state to microarchitectural components.

1.2 Technique Overview

Figure 1 gives a high-level overview of our technique: the
hardware developer provides (1) the datapath in a Hardware
Description Language (HDL); (2) the architectural specifi-
cation that the hardware implements, taken from existing
formalizations such as ILA [23-25, 48, 58, 59] or Sail [2];
and (3) the lightweight model connecting the datapath com-
ponents to the specification, in the form of an abstraction
function. Our method takes those inputs and uses program
synthesis techniques adapted from the Programming Lan-
guages community to automatically create the necessary
control logic, thus completing the hardware design (data-
path + control logic) and ensuring correctness against the
specification. Control logic synthesis enables hardware de-
velopers to freely modify and iterate in design of both the
ISA/ILA and the datapath without getting caught up in the
abstruse details of control. Further, it assures that the final
implementation (not just a model of the design) is correct.
We focus our efforts on the design space exemplified
by OpenTitan [30] (an open source silicon Root-of-Trust):
embedded-class, small, but sophisticated designs for applica-
tions requiring bespoke, highly trusted cores and accelera-
tors (e.g., for cryptography). We first target the core RISC-
V ISA plus cryptography extensions and investigate both
pipelined and non-pipelined microarchitectures. Further, to
demonstrate our technique’s generality, we generate control
logic for a bespoke constant-time cryptography core and
also for a cryptographic accelerator targeting the Advanced
Encryption Standard (AES). Our major contributions are:

e We introduce a novel HDL Intermediate Representa-
tion (IR) named OYSTER designed to be amenable to
HDL-level program synthesis techniques (Section 3.1).

e We present an HDL program synthesis toolchain that
takes a datapath and a specification for ISA/ILA se-
mantics and automatically generates HDL code that
implements the control logic (Section 3).

e We evaluate our toolchain on an embedded-class root-

of-trust SoC design, encompassing a RISC-V core, constant-

time cryptography core, and AES hardware accelera-
tor, automatically extracting semantics from architec-
tural specifications written in ILA [25], and generat-
ing correct-by-construction control logic code in the
Python-based HDL PyRTL [12].

2 Background

Here we briefly review the concept of the control-datapath
divide in hardware design and make clear specifically how
we split control and datapath for the class of designs we con-
sider. We broadly define the datapath as “the functional units
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that define system operations”; and control logic as “the sig-
nals that coordinate and route data through the appropriate
functional units at the appropriate times” While in practice
the line between control and data can be blurry, to focus the
scope of our control logic synthesis technique we describe
two control structures commonly found in hardware designs:
(1) instruction decoders, and (2) finite state machines (FSMs).
For this purpose we present small but illustrative examples
of hardware designs with each type of structure and show
how we split each design into control logic and datapath.

2.1 Instruction-Level Abstraction

In this work, we use ILA for architectural specifications.
We provide an overview of ILA here to aid in understand-
ing our example use cases and direct the reader to the ILA
paper [25] for a complete description. ILA provides a mecha-
nism to functionally specify the hardware-software interface
for both processors and accelerators. As the name implies,
the core unit of computation is modeled as an "instruction."
Instruction models capture the software-visible state updates
made per unit of computation. Each instruction is specified
with functions describing how it is fetched, decoded, and
how it updates state. ILA authors specify each instruction’s
fetch, decode, and update functionality with the help of the
ILA C++ library. In the case of a processor, the instruction
model is the familiar concept of an ISA instruction specifica-
tion. ILA abstracts this further by allowing the specification
to rely on a wide-range of state-variables and inputs that are
not present in general-purpose ISA specifications, but are
widely used in MMIO-based accelerators. For example, one
may want to trigger an instruction only when certain criteria
in its state and input values are met. ILA also allows break-
ing down complex instruction into a hierarchy of smaller
state updates, which further enables reasoning about and
specifying complex device interfaces.

2.2 Instruction Decoder Example

A common control structure is instruction decoder-style
control logic. This type of control receives an instruction
or opcode as input and, based on decode logic from the
specification, sets control signals to route data through the
design to correctly execute the given operation. Consider
the following ILA specification for an ALU machine:

ilang::Ila CreateAlulla() {
auto ila = ilang::Ila("alu_ila");
// args here are name and bitwidth
auto op = ila.NewBvInput("op", 2);
auto dest = ila.NewBvInput("dest", 2);
auto srcl = ila.NewBvInput("srcl", 2);
auto src2 = ila.NewBvInput("src2", 2);
// name, addr width, data width
auto regs = ila.NewMemState('regs", 2, 8);

auto rsi_val = ilang::Load(regs, srcl);
auto rs2_val = ilang::Load(regs, src2);
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Figure 2. The datapath diagram for a three-stage implemen-
tation of the ALU machine. The decoded instruction is input
to the control unit, which determines how to set control
signals in the datapath.

auto ADD = ila.NewInstr("ADD");
{
ADD. SetDecode(op == BvConst(1, 2));
auto res = rsl_val + rs2_val;
ADD.SetUpdate(regs, ilang::Store(regs, dest, res));
}
// similar for other ALU operations ...
return ila; }

The ALU takes four inputs (op, src1, src2, and dest),
which are previously decoded from some instruction. The
architectural state is made of four registers stored in regs.
SetDecode is an ILA method that specifies the conditional
logic to determine whether an instruction is enabled to ex-
ecute. The decode logic for an ADD operation in the ALU
specification states that the op input must be equal to 01.
Similarly, SetUpdate describes the actual state update logic
for the instruction. SetUpdate operates on one state element
at a time; its first argument is the given state element, and
the second argument is an expression describing how to up-
date the state. For the ADD operation, the update procedure
updates register file regs using the built-in ILA function
ilang: :Store which stores a new value in memory state.

Suppose the hardware designer wants to implement the
ALU machine as a three-stage pipeline; then Figure 2 illus-
trates the design diagram, clearly labeling which part of the
design corresponds to the control logic (with the bulk of
the design being the datapath). The hardware designer has
inserted two pipeline registers in the datapath, one after
reading the src1 and src2 registers from the register file
and one for storing the result of the ALU operation. The
dashed boxes and arrows indicate where the designer would
place the control logic to guide the data through the datapath
and to select certain paths and functionality depending on
the op input. Given the datapath portion of this diagram
and a specification for the desired behavior, our technique



ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

would automatically infer the correct control logic to fulfill
the intended system behavior.

2.3 Finite State Machine Example

Another common class of control logic we consider are FSMs.
Consider a simple accumulator machine with the following
specification, expressed in ILA:

ilang::Ila CreateAccIla() {
auto ila = ilang::Ila("acc_ila");

// args are name and bitwidth

auto reset = ila.NewBvInput("reset", 1);
auto go = ila.NewBvInput("go", 1);

auto stop = ila.NewBvInput("stop", 1);
auto val = ila.NewBvInput("val", 2);
auto acc = ila.NewBvState("acc", 8);
auto state = ila.NewBvState("state", 2);

auto reset_instr = ila.NewInstr("reset_instr");
reset_instr.SetDecode(state == STOP && reset == 1);
reset_instr.SetUpdate(acc, 0);
reset_instr.SetUpdate(state, RESET)

auto go_instr = ila.NewInstr("go_instr");
go_instr.SetDecode((state == RESET && go == 1)

|| (state == GO && stop == 0));
go_instr.SetUpdate(acc, acc + val);
reset_instr.SetUpdate(state, GO)

auto stop_instr = ila.NewInstr("stop_instr");
stop_instr.SetDecode(state == GO && stop == 1);
stop_instr.SetUpdate(acc, acc);

return ila; 3}

The specification describes a design with state acc, and
three instructions that update the state based on the input
signals (reset, go, and stop).

Suppose the hardware designer intends to implement an
FSM (illustrated in Figure 3) that matches the accumulator
specification. The FSM has three states for the accumulator
updates associated with the reset, go, and stop inputs; it
defines transitions between the three states with predicates
derived from those input signals.

In this case, the datapath is simply the set of FSM states
and the control logic is the transitions between them. Given
the accumulator updates required for each state as well as the
specification, our technique would automatically infer the
necessary state encodings, transition conditions, and FSM
transitions to fulfill the intended system behavior.

One implementation of the datapath, expressed in pseu-
docode, looks as follows:

state := ??

with state:
?? — acc := 0
?? — acc := acc + val
?? — acc := acc

out := acc
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Figure 3. An FSM for the accumulator machine. Each state
corresponds to how the machine updates the accumulator
register. The input signals, reset, go, and stop predicate the
state transitions.

The ?? in the code represents control points in the data-
path. The with statement is syntactic sugar for conditional
assignment predicated on the state argument; it describes
the conditional updates in the datapath to the accumulator
(here the designer implements acc as a register).

The key point is that our control logic synthesis technique
only requires a datapath sketch (the solid-line components
of Figures 2 and 3) and a specification. Control logic synthesis
fills in the rest of the design—i.e., all of the dotted-lines
in Figures 2 and 3 and their associated logic.

3 Control Logic Synthesis Technique

In this section we describe the high-level process for automat-
ically generating correct-by-construction control logic. We
show through our case studies in Section 4 how to specialize
it to common architectures and hardware designs.

Figure 4 presents the overall work-flow of our toolchain.
The inputs are (1) an architectural specification using ILA [25];
(2) an HDL sketch of the datapath!; and (3) a lightweight
abstraction function mapping state in the datapath sketch to
the architectural specification level. Our tool automatically
extracts correctness conditions from the ILA specification
plus the abstraction function; translates the datapath sketch
into an intermediate representation called OYSTER; and fi-
nally, via Rosette [50, 51], compiles the OYSTER program
and correctness conditions together into a symbolic form to
generate the control logic. A human can then iterate on the
design by modifying the specification and/or the datapath
sketch (and updating the abstraction function accordingly)
to get new designs.

The control logic synthesis process comprises three main
components, detailed in the following subsections:

1. An intermediate representation (IR) tailored for pro-
gram synthesis (Section 3.1) that captures essential
datapath constructs as well as holes for control logic.

2. An abstraction function between the microarchitecture
of the datapath sketch and architectural specification

ISpecified using the PyRTL HDL [12], though other languages such as
SystemVerilog could be supported.
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Figure 4. A diagram of the overall workflow.

Design ::= decl(decl™) stmt*
decl € Declaration := input name width | output name width
| register name width
| memory name width width
| hole name width
stmt € Statement = var := expr | write mem addr data enable
expr € Expression :=var | const | - expr | expr binop expr
| if expr then expr else expr
| extract expr high low | read mem addr
const € Constant == width ’ value
binop € BinaryOps == A | V | & |+]|=
mem, name,var € ldentifier
high, low, value, width € Integer

addr, data, cond, enable € Expression

Figure 5. The grammar for OYSTER. An “extract” expression
extracts the bits from the bitvector value in expr between
the bit-index positions low and high.

(Section 3.2), serving as a lightweight microarchitec-
tural model which connects architectural state in the
datapath to state in the specification.

3. And finally, a program synthesis technique that fills
the holes in the datapath sketch using the pre- and
postconditions from the formal architectural specifica-
tion as constraints, generating correct-by-construction
control logic (Section 3.3).

3.1 OYSTER Intermediate Representation

Our representation must be amenable to automated reason-
ing and also easily constructed from conventional HDLs. We
present an IR named OYsTER that is high-level enough to
easily translate to/from HDLs such as PyRTL and Verilog yet
is also designed to accommodate program synthesis. Oys-
TER embodies a subset of features from conventional HDLs
in order to reduce the complexity of automated reasoning
while still being complete enough to express non-trivial de-
signs (as shown in our case studies). OYSTER programs can
be translated to SMT constraints expressed in the theories
of bitvectors and uninterpreted functions which allows us to
leverage standard program synthesis techniques and tools.

Figure 5 describes the grammar for OYSTER. An OYSTER
program has two components: (1) a set of declarations for
inputs, outputs, and stateful elements, and (2) a series of
statements that describe the design, how data flows to its
output ports, and how to update stateful elements. OYSTER
represents all variables as bitvectors, with the exception
of memories. We model memories as a pair containing an
uninterpreted function for reads and an association list to
track writes. For space reasons we do not include here all
of the operators supported by OYSTER expressions, which
include many common bitvector operations.

The hole construct in Figure 5 allows the hardware de-
signer to specify where the control logic should be filled
in for the datapath sketch. Our case studies (Section 4) de-
tail how to use holes in datapath sketches for control logic
generation in different design scenarios.

An OYSTER interpreter is essentially a cycle-accurate sim-
ulator for synchronous hardware designs. Thus, we assume
that all OYSTER designs are synchronous with a single im-
plicit clock—all writes to registers and memory take effect
in the next cycle. We implement the OYSTER interpreter in
Rosette, a Racket-based framework for solver-aided program-
ming. A key feature of Rosette is that by writing a concrete
interpreter for a language, Rosette automatically lifts that
interpreter to work with symbolic values, thus generating
a symbolic interpreter “for free”. This symbolic interpreter
then leverages SMT solvers to solve satisfiability questions
such as those that we will use to automatically generate
control logic.

3.2 Abstraction Function

We use the abstraction function to map datapath components
in OYSTER code to architecture-level state in the specification.
Because of the semantic gap between the architectural spec-
ification and the datapath implementation, it is not obvious
to formal reasoning tools (such as a program synthesizer)
what the connection is between, for example, architectural
registers in the specification and a register file in the imple-
mentation. An abstraction function maps effectful behavior
at the specification level (for example, reading and writing
to state) into the semantics of the datapath components for a
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particular microarchitecture. This section describes abstrac-
tion functions at a high level, and our case studies in Section 4
give more detailed examples.

For an abstraction function, the developer needs to specify
for each architectural state element in the specification:

1. The corresponding name of the datapath component;

2. The type of the datapath component: one of either
input, output, register, or memory;

3. A list of state effects indicating reads or writes from/to
the datapath component, annotated with timing (that
is, for each read/write, when the effect occurs in the
datapath).

We specify abstraction functions (denoted «) for control
logic synthesis with the following grammar:

a == (SpecID: {name: DatapathlD, type: type, Leffect*1})*
with cycles: TimeStep, assume”
type == input | output | register | memory
effect :=read: TimeStep | write: TimeStep
assume = [DatapathlD: TimeStep]*
For the three-stage ALU example in Section 2.2, the devel-
oper would provide the following abstraction function:

op: {name: 'op', type: input, [read: 11}
srcl: {name: 'srcl', type: input, [read: 1]}
src2: {name: 'src2', type: input, [read: 11}
dest: {name: 'dest', type: input, [read: 1]}

regs: {name: 'regfile', type: memory, [read: 1, write: 31}
with cycles: 3

TimeStep i > 0 is the state of the datapath after updating
all registers and memories with the results of the (i — 1)
step of evaluation (because OYSTER evaluates designs syn-
chronously). op, src1, src2, and dest are all inputs in the
datapath and read at time 1. regfile is a memory that maps
to the set of architectural registers (regs); the datapath reads
it at time 1 and writes to it at time 3. The developer also spec-
ifies how many cycles to symbolically evaluate the sketch;
in this case it is equal to the depth of the pipeline.

The with clause optionally accepts a list of signals in the
datapath sketch which the symbolic evaluator assumes to be
true. Datapath developers provide assumptions in situations
where datapath hazards interfere with architectural instruc-
tion behavior. For example, a control hazard may flush the
pipeline, “killing” the currently executing instruction. In this
scenario, the program synthesizer cannot find a satisfying
solution for the control logic because it can always find a
case where the executing instruction is invalid. Our constant-
time cryptography core requires this kind of assumption in
its abstraction function (Section 4.2).

It is possible there is no one-to-one mapping between dat-
apath components and architectural state. For instance, an
ISA specification may not distinguish between instruction
memory and data memory, modeling both together, whereas
a datapath targeting that ISA may choose to implement the
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instruction and data memories as separate memory blocks. In
that case, the developer adds multiple entries to the abstrac-
tion function, e.g., for the architectural memory example:

mem: {name: 'i_mem', type: memory, [read: 1]}
mem: {name: 'd_mem', type: memory, [read: 2, write: 31}

In a multi-cycle design, the implementation may affect
architectural state over time. Capturing these timing effects
is crucial for designs with pipelining. The pipelined ALU
scenario exemplifies the gap between the architectural spec-
ification and the datapath implementation. Abstraction func-
tions bridge this gap to give our program synthesis technique
enough semantic information about the relation between
state in the architecture and datapath sketch to find satisfy-
ing solutions for the control logic.

3.3 Program Synthesis for Control Logic

In Figure 4, the process inside the dotted box illustrates the
overall flow for the program synthesis step. Given a datapath
sketch in an HDL, our technique first compiles the sketch
into OYSTER and then uses Rosette to translate the OYSTER
program into an SMT formula via symbolic evaluation us-
ing the theories of bitvectors and uninterpreted functions.
For multi-cycle designs, the symbolic evaluator runs for the
number of steps specified by the user. Then, for an architec-
tural specification, our tool automatically extracts the pre-
and postconditions and provides them as constraints to the
program synthesizer. We formulate the program synthesis
problem as follows:

e, ..., en, Vso. (1)
lnterpretk(so, Sketch[hy :=ey, ..., hp :=e,]) = (Si)f:p
/\ Pre;[sspec == a(so)] — Post;[sspec := a(sy, ..., sp)].

J

For all holes hy, . . ., h, in the datapath sketch, the program
synthesizer searches for OYSTER expressions ey, . . ., e, filling
the holes in Sketch with an implementation for the missing
control logic. Equation (1) quantifies over the initial state so
because the synthesized expressions, ey, . .., e,, must hold
for any initial state for every instruction in the specification.

Interpret® evaluates the OYSTER sketch given an initial
state sy and returns a sequence of environments, sy, .. ., S,
capturing the state of the design after each step. Then, for
each instruction j, the formula asserts that the precondition
implies the postcondition. The precondition Pre; takes the
initial state sy after passing through abstraction function
a, and the postcondition Post; takes the computed states
S1, ..., Sk transformed according to a.

The abstraction function « acts as a substitution proce-
dure for the pre- and postconditions between state in the
specification and state in the datapath. To understand how
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a fits into Equation (1), we separate the substitution proce-
dure into two parts, for the precondition and postcondition,
respectively.

Pre;j[sspec = (s9)], Where sgpec is a state element from
the ISA specification; read as, “for the precondition for in-
struction j, substitute each occurrence of sspec With a(sp)”

Post;[sspec = a(s1, ..., sg)], witha(sy, ..., sg) = s;, where
tis a TimeStep and 0 < t < k. The substitution procedure
checks whether the state element is part of a read or write
using t as specified in a. Further, for each assume in a, the
procedure adds a conjunction that the given datapath signal
in s; is true, where t is the associated TimeStep.

In practice, for large j (the number of instructions in the
specification), solving times dramatically increase, as our
evaluation shows in Section 5. To overcome this scalability
issue, we introduce an optimization for control logic syn-
thesis that can be applied under an assumption about the
design.

3.3.1 Optimization for Control Logic Synthesis. To
overcome the scalability limitation of the described program
synthesis technique, we scale control logic synthesis by gen-
erating the control logic independently per instruction and
then join the results together into a final overall form accord-
ing to the preconditions in the specification. We introduce a
property we call instruction independence, which must
hold on the datapath sketch in order to apply this optimiza-
tion. (In Section 3.3.2, we present an argument for the cor-
rectness of this optimization for the class of machines we
target.)

Instruction Independence for Control Logic consists
of two conditions that must hold on the given datapath
sketch in order to solve for control logic independently:

1. Mutually exclusive preconditions: The precondi-
tions, or antecedents, for the control logic for each
instruction are disjoint.

2. No feedback in control logic: Signals output from
the control logic cannot feed back into the control logic
except for valid wires identified in a.

For the first condition, the decoder and FSM-style control
we consider in our case studies necessarily satisfy this con-
dition, as instructions are uniquely decoded. In this way, if
the control logic for two instructions share the same precon-
ditions then the control logic is identical.

For the second condition, we require no feedback so that
it is possible for the control logic to be solved independently.
The exception for valid signals identified by the abstraction
function allows the optimization to handle designs that have
determined dependencies between instructions. For example,
the constant-time cryptography core (Section 4.2) exhibits
control hazards when branches resolve and force a flush
of the currently fetched instruction. The valid signal that
determines the control hazard derives from the control signal
controlling a branch. If there is a flush, the signal is false
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function U(holes, results):
control := []
for hole in holes:
hole-defn := LogicGen(results[holel)
control := control + Assign(hole, hole-defn)
return control

function LogicGen(val—ops):
val, opcodes := head(val—ops)
cond := \/ opcodes
return IfThenElse(cond, LogicGen(tail(val—ops)), val)

Figure 6. An algorithm for combining individual control
logic synthesis results together into a complete implementa-
tion under the instruction independence assumption.

indicating a valid instruction is not executing, thus there is
no control logic to dispatch.

The intuition for why this speeds up control logic synthe-
sis is that specifications with large number of instructions
produce correspondingly large conjunctions of constraints—
following Equation (1)—that SMT solvers struggle to solve.
By making the independence assumption about instruction
behavior, we break up the conjunction. Then, our control
logic synthesis tool sends the individual synthesis queries to
the SMT solver which are considerably smaller.

Given an instruction in the specification, the tool extracts
the instruction’s preconditions (for example, the instruction
opcode as calculated by the fetch/decode logic and possibly
other specified conditions, such as checking that the destina-
tion register is not the zero register). Next, the tool extracts
the specified state change as a postcondition. The result is
a formula that expresses the logical statement, “assuming a
specific opcode (and any other relevant preconditions), what
values for the existentially quantified variables result in the
asserted state change being true?” A satisfying solution from
the SMT solver is a concrete bitvector assigning a value to
each control signal.

Control logic synthesis repeats this process for each in-
struction in the specification, resulting in a mapping of con-
trol signals to concrete bitvector values. The last step is to
translate this mapping into complete OYSTER expressions
that incorporate the constraints from all instruction seman-
tics, producing satisfying control logic to generate each con-
trol signal based on the opcodes and other relevant state.

We call this procedure the control union, which we ab-
breviate as LI and define in the algorithm in Figure 6. The
procedure takes as input a list of holes in the datapath
sketch and synthesis results from per-instruction control
logic synthesis. The results variable maps for each hole
the concrete bitvector value solved during control logic syn-
thesis to an instruction (or list of instructions, if multiple
instructions map to the same control signal value).
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For example, consider the following map of synthesis re-
sults from a small RISC-style design with three instructions:
ADD, LOAD, and JUMP; and three holes for control signals:
write-register, read-memory, and jump.

results = {
"write-register": {@b1: [ADD, LOAD], 0b@: [JUMP]},
"read-memory": {@bl: [LOAD], @b@: [ADD, JUMPI},
"jump": {@b1: [JUMP], @b@: [ADD, LOAD]}}

After running the LI procedure as described in Figure 6
over the results map, we obtain the following OYSTER code
implementing the control logic:

pre-add := op = ADD
pre-load := op = LOAD
pre-jump := op = JUMP
write-register := if (pre-add V pre-load) then 1
else if pre-jump then @
read-memory := if pre-load then 1
else if (pre-add Vv pre-jump) then @
jump := if pre-jump then 1
else if (pre-add V pre-load) then @

For readability and reuse, the variables pre-add, pre-1load,
and pre-jump define the preconditions for each instruction
in OYSTER code based on the specification (derived automati-
cally). While this example is smaller than the control logic in
our case studies, the LI procedure is flexible enough to handle
signals of larger bitwidths and generate nested multiplexers
(through nested if-then-else expressions).

3.3.2 Correctness Argument of Union Operation. Here
we argue that joining individual generated control logic per-
instruction under the LI procedure produces a correct imple-
mentation of control logic with respect to the architectural
specification. We present our argument starting from the
“ideal” problem formulation presented in Equation (1). By
solving the control logic for each instruction individually,
we rearrange the formula to:

Ec{), .., Ch Vs . (2)
Interpretk(so Sketch[hg := cj hy, = cj]) = (s)k
) . 0> > n - n 1)i=1>
Prej [sspec = 0((50)] — POStj [sspec =alsy, ..., S0l
where cé, cees cf; are OYSTER constants.
The new formula says that for each instruction j in the
specification, there exists OYSTER constants ¢, ..., ¢} that

satisfy the holes in the datapath sketch for that instruc-
tion. Applying the instruction independence assumption
rearranges Equation (1) according to the two conditions
(from Section 3.3.1). Because we assume mutually exclu-
sive preconditions, we break the big conjunction of Pre; and
Post; into a single implication for each instruction j. Assum-
ing no feedback in the control logic, we separate the gener-
ated control into disjoint, per-instruction pieces such that
L] I cé, c£ =eg, ..., e,. Thatis, the individual synthesis

Sisco, Alex, Ma, Aghamohammadi, Kong, Darnell, Sherwood, Hardekopf, and Balkind

results after the control union is a correct implementation of
the control logic and semantically equivalent to the OYSTER
expressions, ey, ..., e,, generated from Equation (1). As the
full formula is a conjunction of all predicates Pre; and Post;
for each instruction j, we break each expression e; filled for
hole h; into per-instruction pieces such that | | c{ = e;.

Note that this correctness argument does not necessarily
hold for designs that do not make this assumption or are
outside of the class of machines we consider in this work.
In Section 5.3, we discuss the limitations of the instruction-
independence assumption and highlight future work to sup-
port more kinds of microarchitectures.

4 Case Studies

Here we cover three case studies: (1) an embedded-class RISC-
V core, (2) a bespoke RISC-V core with a custom instruction
set for constant-time cryptography, and (3) a cryptographic
accelerator targeting AES. For each, we show how we spe-
cialize the core flow of our technique from Section 3.

4.1 Embedded-Class RISC-V Core

In this case study, we demonstrate how our control logic syn-
thesis technique automatically generates the implementation
of the instruction decoder-style control logic for different
iterations of an embedded-class RISC-V core. We use an exist-
ing ILA specification for the RISC-V ISA [22]. The case study
iterates on the design over two dimensions—modifying the
architectural specification by adding ISA extensions, and
modifying the datapath sketch by adding a pipeline.

We begin with the RISC-V 32-bit integer base instruction
set (RV32I). This set totals 37 instructions, excluding the
ecall and ebreak instructions because the target cores do
not implement exceptions or interrupts. Then we add to the
base ISA two extensions geared towards cryptography: Zbkb
and Zbke. The Zbkb extension is a set of 12 bit-manipulation
instructions which are common in cryptographic applica-
tions: rotate (rol, ror, rori), logical-with-negate (andn, orn,
xnor), byte reversal (rev8, rev.b), shuffle (zip, unzip), and
word packing (pack, packh). Zbke is an extension that adds
two carryless multiply instructions: clmul and clmulh.

4.1.1 Single-Cycle Datapath. We start with a single-cycle
datapath sketch, implementing the main components of the
processor for executing each instruction class. To write the
sketch, the developer identifies control points in the datapath
and leaves these as holes, following the instruction-decoder
pattern for control logic (described in Section 2.2). The fol-
lowing shows a portion of the datapath sketch in PyRTL,
underlining the control signal variables for emphasis:

instruction = fetch(i_mem, pc)
opcode, funct3, funct7, imm = decode(instruction)

alu_imm <<= ??(opcode, funct3, funct7)
alu_op <<= ??(opcode, funct3, funct7)

reg_write <<= ??(opcode, funct3, funct7)
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read_mem <<= ??(opcode, funct3, funct7)
# ...
jump <<= ??(opcode, funct3, funct7)

alu_in2 <<= mux(alu_imm, rs2_val, imm)
alu_out <<= alu(alu_op, rsi_val, alu_in2)

# Register file update
with conditional_assignment:
with reg write:
with read_mem:
rflrd] |= d_mem[alu_out]
with jump:
rflrd] |= pc + 4
with otherwise:
rflrd] |= alu_out

# PC update
pc.next <<= mux(jump, pc + 4, target)

For each signal, the developer leaves its implementation
as a hole (??) and passes as input the parts of the decoded
instruction (opcode, funct3, and funct7).

Abstraction Function. The microarchitecture of the single-
cycle core closely matches the architectural specification.
There is no special timing and state effect information to
consider; all reads and writes happen at time step 1:

pc: {name: 'pc', type: register, [read: 1, write: 1]}
GPR: {name: 'rf', type: memory, [read: 1, write: 11}
mem: {name: 'd_mem', type: memory, [read: 1, write: 11}
mem: {name: 'i_mem', type: memory, [read: 1]}

with cycles: 1

In the ILA specification for RISC-V, GPR stands for “general-
purpose registers” and is modeled as a vector of registers. In
the datapath sketch, GPR maps to a memory rf which is the
register file. The datapath sketch also separates instruction
and data memory as i_mem and d_mem, respectively.

Program Synthesis. As our results show in Section 5, the
program synthesis tool is unable to generate control logic for
the entire core ISA specification at once. To overcome this
limitation, we take advantage of the RISC-V ISA instruction
independence (i.e., the control logic for each instruction
does not depend on any other instructions) and apply the
optimization described in Section 3.3.1, generating control
logic for each instruction independently and combining them
together according to the algorithm in Figure 6.

Figure 7 shows an example of the generated control logic
in PyRTL for a load word instruction (LW) from the RISC-
V core. The with statements in PyRTL specify conditional
assignments for wire variables in the design (with the condi-
tional assignment operator denoted by |=). The code in Fig-
ure 7 executes control logic for a LW instruction because the
conditional with expressions match on the corresponding
opcode and 3-bit function code from the decoded instruction.
For a load instruction, control logic synthesis determines

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

with op == LOAD:

with funct3 == ox2:
mem_read |= 1
mask_mode |= 2
alu_op |= ADD
alu_imm |= 1
reg_write |= 1
mem_write |= @
mem_sign_ext |= @
jump |= @
# Other control signals continue...

Figure 7. PyRTL code of the generated control logic for
a load word instruction (LW) in the RV32I core. LOAD and
ADD are mnemonics for numeric values and used here for
readability. The with construct in PyRTL is syntactic sugar
for nested multiplexers which we present here for readability.

that the following must occur in the datapath to satisfy the
ISA instruction semantics for LW:

e Signal a memory read (mem_read |= 1) with the mask
for a word-sized load (mask_mode |= 2).

e Perform an ALU operation with the operation signaled
by alu_op |= ADD, and direct the immediate value
from the decoded instruction into one of the ALU’s in-
puts (@lu_imm |= 1). These control signals coordinate
the calculation of the address to be read from memory.

e Signal a write to the register file (reg_write [= 1).

e Set other control signals to false so that other state
elements are not modified in a way that is inconsistent
with the ISA instruction semantics (e.g., mem_write,
and jump are all set to 0).

4.1.2 Two-Stage Pipeline Datapath. Next, we extend the
design to an embedded-class core similar to Ibex [29]. We
keep the ISA specification (including extensions) exactly the
same as the single-cycle core, and only change the datapath
sketch, adding two pipeline stages. The first pipeline stage is
instruction fetch, decode and execute. The second pipeline
stage is memory and write back.

Abstraction Function. Because we introduce pipelining
into the datapath, we need to strengthen the abstraction
function by adding timing information related to the microar-
chitecture. Specifically, we indicate for each corresponding
architectural state element in the datapath which cycle (i.e.,
pipeline stage) that state is read or modified. Due to pipelin-
ing, without this timing information the generated pre- and
postconditions will not have semantically valid values and
the program synthesizer will fail to find a satisfying imple-
mentation for the control logic.

pc: {name: 'pc', type: register, [read: 1, write: 2]}
GPR: {name: 'rf', type: memory, [read: 1, write: 2]}
mem: {name: 'd_mem', type: memory, [read: 2, write: 2]}
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mem: {name: 'i_mem', type: memory, [read: 113}

with cycles: 2

The main changes to the abstraction function from the
single-cycle core are the read and write time steps (under-
lined). In the two-stage pipeline, reads and writes to the
register file occur in parallel (stage 1 and stage 2). All data
memory operations occur in stage 2. By indicating a read
at time step 1 (i.e., stage 1 of the pipeline), any writes that
occurred in parallel in stage two will be available from the
perspective of the symbolic evaluator.

Program Synthesis. With the new abstraction function,
program synthesis follows the same as the single-cycle core,
except the symbolic evaluator runs the sketch for 2 cycles.

4.2 Constant-Time Cryptography Core

As an additional case study, we modify the RISC-V design
described above to create a bespoke core for constant-time
cryptography. The motivation is that conditional branch
instructions introduce variable instruction latency, which
reveal timing side channels. We modify the RISC-V ISA spec-
ification to remove conditional branch instructions and all
other instructions not necessary to execute SHA-256. We
then extend it with a custom instruction for conditional
move (CMOV). In cryptographic deployments, this bespoke
instruction set ensures that the number of cycles executed
on the core remains independent of the input length, making
it resilient to timing side channel attacks.

Starting from the two-stage RISC-V core, we modify the
datapath to add a third pipeline stage, remove all conditional
branching logic, and extend the decode unit and ALU to
support the new CMOV instruction. The three stages are: (1)
instruction fetch, (2) instruction decode and execute, and (3)
memory and write back.

Abstraction Function. The abstraction function for the
three-stage pipeline is a modification of the two-stage ab-
straction function, following the read and write timing of
the new datapath.

pc: {name: 'pc', type: register, [read: 1, write: 2]}
GPR: {name: 'rf', type: memory, [read: 2, write: 3]}
mem: {name: 'd_mem', type: memory, [read: 3, write: 3]}
mem: {name: 'i_mem', type: memory, [read: 113}

with cycles: 3, [instruction_valid: 1]

The main change is the instruction_valid signal as-
sumption in the datapath. The assumption states that this
wire should be true at time step 1. This assumption resolves
the case when there is a control hazard in the pipeline. An
unconditional branch instruction such as JAL will resolve in
stage 2, and force a flush of the fetched instruction in stage
1. Assuming instruction_valid is true will prevent the
solver from trying to synthesize control for an instruction

that is going to be flushed.
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Program Synthesis. The program synthesis step requires no
change from the previous case studies; symbolic evaluation
runs for 3 cycles.

4.3 AES Hardware Accelerator

In this case study, we demonstrate how our control logic syn-
thesis technique automatically generates the implementation
of the FSM-style control logic for an AES-128 hardware ac-
celerator. We take an existing ILA specification for AES-128
encryption [22], and compile it to constraints for our control
logic synthesis tool as described in Section 5.1. While the
AES specification does not have typical “instructions” as a
general-purpose ISA does, it splits the main computation
units for AES encryption into three distinct states: “first”,
“intermediate”, and “final”. The ILA models each state as a
separate ILA instruction, which the device can exist in for
one or more “rounds.” As an example, the following code is
part of the ILA specification for the intermediate round AES
computation (where the functions CipherUpdate_MidRound
and KeyUpdate_MidRound compute the update for their re-
spective state elements):

auto instr = model.NewInstr("IntermediateRound");
instr.SetDecode((round > @) & (round < 9));
instr.SetUpdate(round, round + 1);
instr.SetUpdate(ciphertext,
CipherUpdate_MidRound(ciphertext, round, round_key));
instr.SetUpdate(round_key,
KeyUpdate_MidRound(round_key, round));

The two key components are SetDecode and SetUpdate.
The SetDecode function specifies the preconditions for the
device existing in that state. The SetUpdate function spec-
ifies the postconditions, that is, the associated updates for
state elements ciphertext, round_key, and round.

For the datapath sketch we implement a multi-cycle data-
path for the AES accelerator following an FSM-style control
structure. The datapath computes one round of encryption
at a time, keeping track of the rounds between cycles. We
leave holes for computing the state transition logic as well
as holes for the states themselves (in the with expressions).

state <<= ??
with conditional_assignment:
with state == ?2:
# Computation for first round ...
with state == ??:
# Computation for intermediate rounds ...
with state == ??:
# Computation for final round ...

The datapath describes how the hardware computes with
and modifies the architecture-level state such as round_key
and ciphertext, but it does not describe what the states are
or how the states transition between each other.

Abstraction Function. The abstraction function bridges the
gap between the AES specification and the datapath sketch
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by explicitly mapping the inputs and registers in the datapath
sketch to the architectural elements in the specification. This
design is not pipelined so we do not capture any timing-
related information in the datapath.

key_in: {name: 'key_in', type: input, [read: 1]}
plaintext: {name: 'plaintext', type: input, [read: 1]}
round: {name: 'round', type: regster,

[read: 1,write: 11}
round_key: {name: 'round_key', type: regster,

[read: 1, write: 11}

ciphertext: {name: 'ciphertext', type: regster,
[read: 1, write: 11}

with cycles: 1

Program Synthesis. The result of control logic synthesis
for AES fills in state condition and state transition logic for
the FSM, and generates the state encodings.

state <<= mux(round == 0,
mux((round > 1) & (round <= 9), 0b10, 0bo1), 0b0od)
with conditional_assignment:
with state == 0b00:
# Computation for first round ...
with state == 0bo1:
# Computation for intermediate rounds ...
with state == obl10:
# Computation for final round ...

We note that we did not make any changes to the core con-
trol logic synthesis technique to support the AES hardware
accelerator. The developer follows the same procedure, pro-
viding a datapath sketch and ILA specification. This case
study demonstrates the generality of our technique and
shows promise for applying control logic synthesis to the de-
velopment of hardware accelerators in other domains such as
image processing, Al, and machine learning, as well as other
aspects of SoC design such as protocol implementations (for
example, cache coherence protocols) [31].

5 Evaluation

In this section, we present the results of control logic synthe-
sis over all designs from our case studies. We ran all experi-
ments on a workstation running Ubuntu 20.04 GNU/Linux
(kernel version 5.15) with an Intel Xeon Gold 6226R 3.9 GHz
processor and 96 GB RAM.

5.1 Implementation

Our implementation spans several languages for each major
component in the tool flow. Overall, the Racket code im-
plementing the OYSTER interpreter and program synthesis
procedures are just over 1,000 source lines of code (SLOC).
Translating PyRTL to OYSTER is about 150 SLOC of Python.
Our implementation also includes adding support for holes
in the PyRTL language. With the exception of the bespoke
cryptography core, we use unmodified, off-the-shelf ILA
specifications for all of the case studies.
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DecodeExpr ::= SetDecode(expr)
UpdateExpr == SetUpdate(state_var, expr)
expr == sym | expr binop expr | lexpr
| Extract(expr, int, int)
| Load(expr, expr) | Load(expr)
| Concat(expr, expr)
| Ite(bool_expr, expr, expr)
| ZExt(expr, int)
+ | = ]&] ...

int | state_var | input_var

binop ::

sym
T[[DecodeExpr]] == (assume T [[expr]])
T[[UpdateExpr]] := (assert (bveq T[[expr]|
(post (a state_var))))
T[[expr binop expr]] == (T[[binop]] T[[expr]] T[[expr]])
T[[lexpr]] := (bvnot T[[expr]])
T|[Extract(expr, int, int)]] == (extract T[[expr]| int int)
]

T[[Load(expr, expr)]] ::= (read-mem (pre (a T[[expr]]))
(bv T[[expr]] addr_width))
T[[Load(expr)]| == (pre (a T[lexpr])
T[[Concat(expr, expr)]] := (concat T[[expr]] T[[expr]])
T[[Ite(expr, expr,expr)]] == (if T[[expr]] T[[expr]] T[[expr]])
T[[ZExt(expr,int)]] ::= (zero-extend T [[expr]]
(bitvector int))
T[[+]] == bvadd T[[==]] := bveq
T[[&]] == bvand

Figure 8. The grammar for ILA decode and update expres-
sions with their Rosette transformation rules. T[[]] defines
the translation function. pre is the initial state environment.
post is the sequence of environments produced after sym-
bolic evaluation (dependent on the number of steps). « is the
abstraction function.

The ILA to Rosette compiler is 550 SLOC of C++. Fig-
ure 8 presents a grammar that defines the compilation pro-
cess. Bold names in the grammar correspond to ILA intrinsic
functions that model common bit manipulation and com-
parison operations whereas bold names in the translation
function correspond to Rosette functions. The DecodeExpr
and UpdateExpr are the top-level rules that are translated
into assume and assert statements in Rosette, respectively.
An ILA-modeled instruction is valid if the expr argument is
true. A modeled instruction may also update one or more
state variables with a call to SetUpdate and passing the
variable as well as the new value. Translation proceeds by
syntactically rewriting the rest of the expression tree.

ILA specifications for FSM-based designs model one state
for each instruction. The conditions for decoding the state
are the architectural preconditions for the device existing in
or entering into that state and the state update is the change
expected to be made after that state finishes execution. Be-
cause the modeling for FSM-based designs is analogous to



ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Control Logic

Design Variant Sketch Size Synthesis Time (s)
AES Accelerator - 250 253.8
AES Accelerator T - 250 315.9

RV32I 358 6.6
Single- RV32I + Zbkb 531 10.2
Cycle Core RV32I + Zbke 668 12.8

Rv32I f 358 Timeout
Two-Stage RV32I 393 96.3
Core RV32I + Zbkb 566 75.4

RV32I + Zbke 703 131.7
Crypto Core CMOV ISA 426 6.7

Table 1. Control logic synthesis results over all case studies:
the AES hardware accelerator, two variants of an embedded-
class RISC-V core, and the constant-time cryptography core.
The “Sketch Size” column gives the size of the datapath
sketch in lines of OYSTER code. Control logic synthesis times
are given in seconds. : Indicates the experiment synthesizes
control logic without the instruction-independence optimiza-
tion. All other experiments use the per-instruction control
logic synthesis strategy with the union operator (as described
in Section 3.3.1).

traditional CPU instructions, our compiler is able to gener-
ate constraints without extra information about the type of
control it is generating,.

As discussed in Section 4.3, we demonstrate our technique
on FSM-based control for an AES accelerator. A unique detail
of AES, which separates its ILA from a standard processor’s,
is that it relies on various lookup tables for computation.
These are modeled in ILA as MEMCONST objects represent-
ing read-only memory. Instead of modeling these with unin-
terpreted functions as with other state elements, the ILA-to-
Rosette compiler generates Racket-level immutable vectors.

5.2 Results

Table 1 presents our experimental results. In most cases,
control logic synthesis takes minutes. We include one ex-
periment where we attempt control logic synthesis over the
entire RV32I RISC-V ISA at once, to show the effectiveness of
the instruction-independence optimization. We set a 3 hour
timeout, which this experiment exceeded, while the exper-
iment on the same design with instruction-independence
optimization took only 6.6 seconds. We also compare times
for the AES accelerator with and without our per-instruction
optimization. While AES does not time out without the opti-
mization, the per-instruction version finishes faster.

Table 2 compares the size of the processor configurations
with generated control logic to a hand-written reference. For
space, we only show the comparison for the single-cycle
core, as the other designs follow the same pattern. The size
of the generated HDL code for the control logic primarily
depends on the number of instructions in the ISA and the
number of control signals. Overall, its size is larger than
the handwritten implementation. However, after hardware
synthesis, the processors with generated control logic use
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about 10% more gates than the reference. We also ran the
generated control logic through a logic optimizing pass in
Yosys [54] which results in about 3% more gates total.

For the constant-time cryptography core, we compile a
SHA-256 program to our bespoke ISA without conditional
branches and using the new CMOV instruction. We simulate
this on the core with test cases varying input string length
from 4 to 32. The simulation results yield the same number
of CPU cycles independent of input length, showing our
bespoke core is constant-time. Further, we compared these
simulations of the cryptography core with automatically
generated control logic against a hand-written reference. The
results show both cores spend the same number of cycles to
produce the same result.

5.3 Limitations and Future Work

Given the time and effort required to implement and verify
a processor in an iterative agile design process, it is notable
that we generate correct control logic in minutes. Here we
discuss some limitations and directions for future work.

One limitation comes from the size and complexity of
constraints sent to the SMT solver for program synthesis.
For large designs evaluated over multiple time steps, solv-
ing times increase dramatically. Exploding solving times is
a known problem in program synthesis and research has
studied how to diagnose and fix performance issues related
to symbolic evaluation [7, 41], more recently targeted for
hardware designs [44]. Given the relatively little attention
to HDLs in program synthesis there is space for these tools
to better accommodate HDLs.

There are many interesting microarchitectural features
to explore with our control logic synthesis technique; we
group these features into two categories:

1. Based on the limitations brought by the instruction-
independence assumption, there are microarchitectural fea-
tures our technique currently cannot handle, like out-of-
order execution. We leave this to future work on how to lift,
generalize, and scale our technique without the assumption.

2. There are designs with features that are worth exploring
and which are not blocked by the instruction-independence
assumption. By adding more invariants through the abstrac-
tion function, our technique can encode more microarchi-
tectural dependencies such as branch predictors, stalls and
exceptions, and resilience to other side-channels.

At present, our tool only generates correct control logic.
The HDL code generated for our RISC-V processor—and the
synthesized circuit—is larger than a handwritten reference.
There is room in our technique to generate HDL code that is
correct and also optimal with respect to some objective func-
tion (size of HDL code, area of circuit, power, etc.). Similarly,
the generated code is not optimized for readability as our
technique essentially produces a netlist. Recent techniques
such as hardware decompilation [47] lift low-level circuits up
to high-level HDL code, producing a more readable artifact.



Control Logic Synthesis: Drawing the Rest of the OWL

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Desisn Variant HDL Control Logic HDL Control Logic  Netlist Size = Netlist Size  Netlist Size
& (Reference) (Generated) (Reference) (Generated) (Optimized)
Sinole- RV321 177 627 41K 46K 42K
C gl C RV32I + Zbkb 214 797 60K 66K 62K
yele Lore  py3aI + Zbke 192 643 68K 73K 70K

Table 2. Size of designs with generated control logic compared to a hand-written reference implementation. HDL Control
Logic records source lines of code in PyRTL of the generated control logic versus the reference. Netlist Size measures the
number of gates in the circuit synthesized from the completed designs using the PyRTL compiler. Netlist Size (Optimized)
records the number of gates in the design after running the generated control logic through a logic optimizer (using Yosys [54]).

Improving feedback for developer experience is further
future work. For instance, if the datapath sketch is incorrect
with respect to the ILA, the tool will fail to find a satisfying
solution for the control logic. Future work can extend the
tool to indicate which part of the datapath is incorrect.

6 Related work
6.1 Symbolic Evaluation for Hardware Design

Existing work like SKETCHILOG [5, 6] generates Verilog code
given a sketch and a reference implementation, but is limited
to combinational circuits. VeriSketch [1] is another sketch-
based Verilog code generation tool that leverages CEGIS and
information flow tracking to synthesize combinational and
sequential circuits that adhere to information flow security
properties. Our work instead uses program synthesis goals
guided by specifications independent of the HDL code. Other
work symbolically evaluates processors for verification or
other analyses [9, 52] like tailoring a processor to a specific
application by reducing area and power through eliminating
unused gates via symbolic analysis [11].

Knox is a framework that uses Rosette to symbolically
evaluate circuits in order to formally verify hardware secu-
rity modules [4] building off of previous work that translates
Verilog designs into a shallow embedding in Rosette [3]. Sim-
ilarly, Pensieve uses Rosette for modeling microarchitectures
to find speculative execution vulnerabilities [55].

6.2 Hardware Languages and Design Tools

PDL (Pipeline Description Language) [57] is an HDL that
raises the abstraction level for implementing pipelined pro-
cessors by letting developers write “one instruction at a time”
semantics for their design and outputs a Bluespec System
Verilog (BSV) pipeline [42]. PDL intersects with our work
as it tackles the problem of designing and reasoning about
pipelined processors from a language perspective. While
PDL relies on the BSV compiler for generating control logic,
our generated control logic is proven correct with respect to
a formal ISA specification.

Xtensa is an extensible processor design tool [19] which
enables developers to “drop-in” components into a processor
pipeline and automates connecting the components together.

Part of Xtensa is the TIE language, which allows specifying
semantics of single-cycle and multi-cycle register-to-register
instructions [49]. Our technique instead allows for arbitrary
HDL code from a developer, not only drop-in components.
Additionally, our tool formally verifies the generated control
logic against an existing ISA specification.

6.3 Formal Verification

Our work intersects with research using automated theorem

provers in verification of microarchitecture models for pro-
cessors similar to those considered in this paper (in-order

execution with shallow pipelines) [10], models with deeper

pipelines [53], and more complex microarchitectures [20,

26, 45]. Much of this work relies on an abstraction function

which “flushes” the implementation whereas in other work,

compositional, or refinement-based, proof techniques obvi-
ate the need for flushing [26, 37, 39, 59]. Our work differs by

starting at the HDL code level rather than a microarchitecture-
level model, and builds on prior microarchitecture verifica-
tion by automatically generating correct-by-construction

control logic for an incomplete hardware implementation.

Broadly, work in formal hardware verification and model
checking [17, 28, 43], intersects with ours as well. Well-
established tools such as ABC [8] use SAT solving for logic
simulation, synthesis, and verification tasks [60]. Advances
in SMT solvers found their way into model checkers for
hardware such as EBMC [15, 27, 40]. Pono [36]—successor
of CoSA [38]—and AVR [18] are model checkers that work
over transition systems and often run multiple model check-
ing algorithms in parallel. Further, past work builds formal
verification into existing HDL toolchains [14, 56].

The Check suite use an interactive theorem prover (Coq)
to prove a microarchitecture’s handwritten MCM is correct
with respect to a suite of litmus tests [32-35] or extract a
model from RTL code for MCM verification [21].
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A
A1l
The

Artifact Appendix
Abstract

provided artifact includes the full implementation of our

control logic synthesis toolchain, the full source and speci-
fications for the evaluated benchmarks, scripts to recreate
the results reported in Table 1, and scripts to set up a Docker
environment with all of the required software dependencies.

A2

A3

Artifact check-list (meta-information)

Run-time environment:

Python 3.11

PyRTL at bfe7141

Racket 8.7

Rosette 4.1

Boolector 3.2.3

CVC4 1.8

Experiments: Control logic synthesis using a program
synthesis toolchain over case studies covering an embedded-
class SoC; compilation from hardware description languages
and formal specifications into solver-aided languages.

¢ How much disk space required?: 2 GB.

e How much time is needed to prepare workflow?: 1
hour.

How much time is needed to complete experiments?:
1-2 hours.

Publicly available?: Yes, https://github.com/UCSBarchlab/
owl

Code licenses: BSD 3-Clause

e Archived: https://doi.org/10.5281/zenodo.11506063

How to access

We recommend cloning the git repository for the latest code:
https://github.com/UCSBarchlab/owl.

A4

Installation

Users can follow the README file in the artifact to install
the required software dependencies and build the toolchain.
Optionally, users can build and run the provided Docker
environment.

A5

Evaluation and expected results

The artifact provides documentation and scripts to run the
different parts of the toolchain for compiling PyRTL to the
Opyster IR and compiling ILA specifications to set of pre-
and postconditions used by the solver. Further, the artifact
provides scripts to recreate the results reported in Table 1.

A.6 Methodology

Submission, reviewing and badging methodology:

o https://www.acm.org/publications/policies/artifact-review-
badging

e http://cTuning.org/ae/submission-20201122.html

e http://cTuning.org/ae/reviewing-20201122.html
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